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Abstract

This article assesses the feasibility of using shape information to detect and quantify the 

subcortical and ventricular structural changes in mild cognitive impairment (MCI) and 

Alzheimer’s disease (AD) patients. We first demonstrate structural shape abnormalities in MCI 

and AD as compared with healthy controls (HC). Exploring the development to AD, we then 

divide the MCI participants into two subgroups based on longitudinal clinical information: (1) 

MCI patients who remained stable; (2) MCI patients who converted to AD over time. We focus on 

seven structures (amygdala, hippocampus, thalamus, caudate, putamen, globus pallidus, and 

lateral ventricles) in 754 MR scans (210 HC, 369 MCI of which 151 converted to AD over time, 

and 175 AD). The hippocampus and amygdala were further subsegmented based on high field 0.8 

mm isotropic 7.0T scans for finer exploration. For MCI and AD, prominent ventricular expansions 

were detected and we found that these patients had strongest hippocampal atrophy occurring at 

CA1 and strongest amygdala atrophy at the basolateral complex. Mild atrophy in basal ganglia 

structures was also detected in MCI and AD. Stronger atrophy in the amygdala and hippocampus, 

and greater expansion in ventricles was observed in MCI converters, relative to those MCI who 

remained stable. Furthermore, we performed principal component analysis on a linear shape space 

of each structure. A subsequent linear discriminant analysis on the principal component values of 
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hippocampus, amygdala, and ventricle leads to correct classification of 88% HC subjects and 86% 

AD subjects.

Keywords

Alzheimer’s disease; mild cognitive impairment; subcortical structures; lateral ventricles; high 
field; subsegmentations; shape abnormality; large deformation diffeomorphic metric mapping

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative brain disorder characterized by a 

progressive dementia that increases in incidence with increasing age [McKhann et al., 1984]. 

AD has been reported to be of an average prevalence, about 50%, among patients with 

dementia [Ferri et al., 2005]. Mild cognitive impairment (MCI) is a syndrome regarded as a 

risk state for dementia [Gauthier et al., 2006] and is associated with an increased risk of 

progression to probable AD [Morris et al., 2001]. Even though more than half of individuals 

with MCI deteriorate to dementia within 5 years [Gauthier et al., 2006], considerable 

heterogeneity exists among MCI patients: some remain stable for a long time, others revert 

to normal cognitive status, and still others develop dementia other than AD [Larrieu et al., 

2002]. The ability to identify an MCI patient’s risk of developing AD is crucial for clinical 

decision-making. Thus, more substantial exploration of subtypes of MCI is needed to 

facilitate the predictive prognosis of which MCI individuals are likely to deteriorate to AD. 

Methods of detecting MCI that represents prodromal AD would aid clinical practice by 

allowing attention to be focused on those with the highest risk of conversion.

Structural neuroimaging measures have been widely used to differentiate healthy controls 

(HC) from subjects with dementia of Alzheimer type because these measures are sensitive to 

the degeneration that occurs in MCI and AD [Ramani et al., 2006]. Detecting structural 

changes in the pre-dementia state would enable early treatment before the development of 

significant functional impairment or neuronal damage. Volumetric assessment, comparing 

the volumes of various brain structures across subjects from the three different groups, is the 

most popular and direct way. Researchers in prior studies have focused primarily on medial 

temporal regions, demonstrating atrophy of hippocampus and entorhinal cortex in 

individuals with MCI or AD compared to those measured in controls [Atiya et al., 2003; 

Bell-McGinty et al., 2002; Dickerson et al., 2001; Frisoni and Caroli, 2007; Jack et al., 

1999; Killiany et al., 2002] and ventricle enlargement in both MCI and AD [Chetelat and 

Baron, 2003; McKhann et al., 1984; Ridha et al., 2008]. Volumes of other subcortical nuclei 

such as amygdala, putamen, caudate, and thalamus have also been reported to be affected in 

MCI and AD [Convit et al., 2000; de Jong et al., 2008; Madsen et al., 2010; Visser et al., 

1999; Whitehouse et al., 1982]. In addition to the magnitude and pattern of structural 

changes, increase in the rate of these changes with disease progression has also been widely 

studied in MCI and AD [Barnes et al., 2009; Henneman et al., 2009; Holland et al., 2011; 

Jack et al., 2009; McDonald et al., 2009; Sluimer et al., 2009].

One potential limitation of the volume-based analysis is that the change of the volume size 

of a single structure does not provide detailed information about the specific subregions 
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showing atrophy or expansion. Evaluating the volume size of a structure makes it difficult to 

identify the specific regions in the structure that are most affected by the disease. Moreover, 

for a single structure, it is plausible that a part of it is undergoing atrophy while another part 

is expanding, which makes the overall volume size unaffected. In this case, simply 

evaluating whether there is volume change in the structure cannot indicate whether this 

structure is affected.

To identify the magnitude and the pattern of structural changes in an individual at an early 

stage or a very mild level AD, new tools that enable the detection of subtle changes in 

neuroanatomy have been sought. Brain warping techniques such as large deformation 

diffeomorphic metric mapping (LDDMM) have been reported to characterize region-

specific variations in numerous neurodegenerative disease studies in terms of either volume 

or shape analysis [Csernansky et al., 1998, 2000, 2002, 2005; Qiu et al., 2007, 2008, 2009; 

Wang et al., 2003, 2006, 2007; Younes et al., in press]. To date, most studies have been 

focused on specific regions such as hippocampus or lateral ventricle [Apostolova et al., 

2006; Csernansky et al., 2005; Ferrarini et al., 2006; Wang et al., 2006]. However, the 

change of a single structure may not necessarily be specific to MCI or AD [van de Pol et al., 

2006]. Incorporating structural information of other subcortical nuclei could aid in 

identifying the atrophy patterns that are specific to dementia of Alzheimer type. 

Additionally, an analysis of multiple structures would help in understanding the spreading 

patterns of the disease in the brain.

So far, the majority of neuroimaging experiments are performed on images acquired from 

1.5T or 3.0T magnetic resonance imaging (MRI) scanners. Due to the coarse image 

resolution of typical structural MRI scans, either the hippocampus or the amygdala is 

usually regarded as a single entity even though they consist of multiple distinct, interacting 

subregions. It has been shown that the distinct subregions of hippocampus are affected 

differently in AD [Fukutani et al., 1995; Small et al., 2000; West et al., 2004]. It would be of 

great potential value in studying the function of the hippocampus and the amygdala if we 

could compare HC and MCI as well as AD respectively on each subregion of the two 

structures. It would also be important in understanding the disease pattern within a single 

structure. Recent advances in MRI data acquisition technology make it possible to acquire 

images with higher resolution and signal-to-noise ratio, which allows for the exploration of 

more fine-scaled features of the hippocampus and the amygdala. However, most existing 

public datasets do not have images obtained from the high field MRI technology, which is a 

fundamental bottleneck in studies based on those datasets. LDDMM is capable of 

transferring the subregion features from a predelineated structural image, acquired from high 

field scanners, to other structural images with more coarse resolution. In this way, the shape 

differences among the three groups could be analyzed more finely based on each subregion 

of the hippocampus and the amygdala.

In this article, we characterize shape abnormalities of seven subcortical and ventricular 

structures (the lateral ventricular system, memory related amygdala-hippocampal circuit, 

thalamic and basal ganglia circuits which receive projections from the amygdala and 

hippocampus) as well as the subregions of the hippocampus and the amygdala in subjects 

with MCI or AD within the framework of LDDMM [Miller et al., 2002]. One goal of this 
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study is to quantitatively assess whether the surface (a two-dimensional manifold) 

contouring a single structure, i.e. the shape, differs as a function of disease severity in 

prodromal and mild AD and whether it could provide accurate prognostic information in 

patients with AD. Specifically, the shape differences among the three groups—HC, MCI, 

and AD are investigated. The MCI populations, at the baseline, are stratified into three 

subgroups according to the longitudinal clinical information: (1) MCI patients who reverted 

to normal status; (2) MCI patients who remained stable; (3) MCI patients who deteriorated 

to AD. The shapes, at the baseline, of these three MCI subtypes are being studied here to 

determine whether differences exist, and in future studies we will investigate their ability to 

predict decline. We are particularly interested in characterizing the atrophy patterns in the 

hippocampus and the amygdala more finely by integration of high-field imaging techniques. 

Therefore, we refine our study of the atrophy patterns in these two structures to include the 

CA1, subiculum, and the part consisting of CA2, CA3, and dentate gyrus (three 

hippocampal subregions), as well as the basolateral, basomedial, centromedial, and lateral 

nucleus (four subregions of the amygdala) based on two 0.8 mm isotropic 7T MRI scans. 

Analyzing the shape changes on each subregion of the hippocampus and the amygdala may 

help understand how the disease spreads within a single structure and identify which part in 

these structures is most affected by the disease.

In this setting of LDDMM, a deformation is computed as the end point of an energy-

minimizing path (a geodesic) through the group of diffeomorphisms. Given a fixed template, 

the anatomical variability in the targets is encoded by the geodesics from the template to 

each target. The fundamental “conservation of momentum” property of these geodesics 

[Miller et al., 2006] allows for representing the entire flow of a geodesic by the initial 

momentum configuration. Since the geodesic flow at any point is completely determined by 

the momentum at the origin, this means that, once a template is fixed, the space of initial 

momenta becomes an appropriate linear vector space [Vaillant et al., 2004] for studying 

shape. Anatomical differences among different target groups can, therefore, be studied by 

applying linear statistical analysis such as principal component analysis (PCA) to the initial 

momentum vectors, which was successfully demonstrated in [Helm et al., 2006; Vaillant et 

al., 2004; Wang et al., 2007]. PCA followed by linear discriminant analysis (LDA) on the 

initial momentum may be able to provide a shape-associated biomarker to discriminate 

between different clinical groups.

We present results from investigations of: (1) anatomical abnormalities in MCI and AD 

compared with HC in all the seven structures; (2) anatomical abnormalities in MCI and AD 

specific to each subregion of the hippocampus and the amygdala; (3) shape differences in 

the three subtypes of MCI in all the seven structures; (4) shape differences in the subregions 

of the hippocampus and the amygdala among the three MCI subgroups. Finally, we present 

linear statistics with discrimination on the initial momentum. The discriminating ability of 

each structure based on its shape information is compared. By combining the shape 

information of different structures, we identify the optimal LDA classifier we could build, 

based on this information, to differentiate AD and HC subjects. To estimate the correct 

classification rate of the optimal LDA classifier, we adopt a two-level leave-one-out cross 

validation procedure.
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METHODS

Alzheimer’s Disease Neuroimaging Initiative

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). The ADNI was launched in 

2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging 

and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private 

pharmaceutical companies and non-profit organizations, as a $60 million, 5-year public–

private partnership. The primary goal of ADNI has been to test whether serial magnetic 

resonance imaging (MRI), positron emission tomography (PET), other biological markers, 

and clinical and neuropsychological assessment can be combined to measure the progression 

of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). Determination of 

sensitive and specific markers of very early AD progression is intended to aid researchers 

and clinicians to develop new treatments and monitor their effectiveness, as well as lessen 

the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center 

and University of California, San Francisco. ADNI is the result of efforts of many 

coinvestigators from a broad range of academic institutions and private corporations, and 

subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal 

of ADNI was to recruit 800 adults, ages 55 to 90, to participate in the research, 

approximately 200 cognitively normal older individuals to be followed for 3 years, 400 

people with MCI to be followed for 3 years and 200 people with early AD to be followed for 

2 years. For up-to-date information, see www.adni-info.org.

Participants

In this study, we included data from 210 HC subjects, 369 subjects with MCI, and 175 

subjects with AD. Within the MCI group, 369 subjects were further divided into three 

groups: MCI-HC—those who reverted to normal cognitive status (13 subjects); MCI-MCI—

those who remained stable (205 subjects); and MCI-AD—those who converted to AD (151 

subjects), according to the clinical information of the population after a follow-up of one 

year. Since the MCI-HC group is very small, we exclude it from our analysis. We term the 

MCI-MCI group as MCI-stable. Group clinical and demographic data are presented in Table 

I. Briefly, subjects are 55 to 92 years old, and are not depressed. The control subjects have 

Mini-Mental State Examination (MMSE) scores of 25 to 30 and a clinical dementia rating 

(CDR) of 0. The subjects with MCI have MMSE scores of 23 to 30, a CDR of 0.5, preserved 

ability to perform daily living activities, and absence of dementia. The subjects with AD 

have MMSE scores of 20 to 28 and a CDR of 0.5 or 1.0 and meet the criteria for probable 

AD.

The subject groups did not differ significantly in age (F =2.53, P =0.081). All groups 

differed on MMSE and clinical dementia rating scale sum of boxes (CDR-SB) as expected 

based on diagnostic criteria (all P < 0.001).
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Image Protocol and Volumetric Segmentation

The volume segmentations of all the seven structures were created from raw DICOM MR 

scans downloaded from the public ADNI website (http://www.loni.u-cla.edu/ADNI/Data/

index.shtml). Locally, the raw MR data were automatically corrected for spatial distortion 

due to gradient nonlinearity [Jovicich et al., 2006] and B1 field inhomogeneity [Sled et al., 

1998]. The two T1-weighted images from each subject were rigid-body aligned to each 

other and then averaged to improve signal-to-noise ratio and resampled to isotropic 1 mm 

voxels. Volumetric segmentations for the hippocampus, amygdala, caudate, putamen, globus 

pallidus, thalamus, and lateral ventricle were created using FreeSurfer [Fischl et al., 2002]. 

Based on the transformation of the full brain mask into atlas space, total cranial vault value 

was estimated from the atlas scaling factor [Buckner et al., 2004] to control individual 

differences in head size.

The quality of the automated volumetric segmentations has been reviewed. Failed subjects 

were excluded from the analysis. Qualitative review was performed, with blinding to the 

diagnostic status, by one of three technicians who have been trained and supervised by an 

expert neuroanatomist with more than 10 years of experience, as described in [Holland et al., 

2009]. The technicians had a minimum of 4 months of experience reviewing brain MR 

images prior to their involvement in this project.

Images that suffered degradation due to motion artifacts, technical problems (change in 

scanner model or change in RF coil during the time-series), or significant clinical 

abnormalities (e.g., hemispheric infarction) were excluded [Holland et al., 2009, 2012]. As a 

result, the number of scans was reduced by approximately 15%.

Surface Generation

In preparation for surface-based morphometric analysis, all volumetric segmentations of the 

seven structures were transformed into triangulated surfaces using a pipeline built on the 

LDDMM-image algorithm. Qiu et al. [2010] created a template set of the seven structures 

(left and right), the Computational Functional Anatomy (CFA) subcortical template [Qiu 

and Miller, 2008], from a separate set of 41 manually labeled volumes. In this CFA 

subcortical template set, each structure has its three-dimensional binary volume 

representation as well as a smooth two-dimensional surface contouring the volume. To be 

specific, the CFA subcortical template consists of 14 binary images Itemp = {Itemp_struct1, 

Itemp_struct 2, …, Itemp_struct 14} and 14 surfaces bounding the corresponding structure images 

Stemp = {Stemp_struct1, Stemp_struct2,…, Stemp_struct14}. For each subject, the corresponding 

volume segmentation images of the 14 structures, Isubi = {Isubi_struct1, Isubi_struct2, …, 

Isubi_struct14}, were created by FreeSurfer [Fischl et al., 2002]. A 14-channel LDDMM-

image mapping [Ceritoglu et al., 2009] was performed to obtain a diffeomorphic change 

between the template coordinate system and the subject coordinate system, with each 

individual channel being the volume image of each structure. To do this, we define a 

distance function, between the deformed template and the i-th subject, as: 

, where the optimizing 

deformation ϕi is generated as the end point, , of the flow of smooth time-dependent 
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vector field, vt ∈ V, t ∈ [0, 1] with the ordinary differential equation, , t ∈ [0, 1] 

for V, a reproducing kernel Hilbert space with a smooth kernel and norm |·|V. The optimal 

diffeomorphism solves the matching problem:

(1)

The deformed template segmentations, corresponding to the i-th subject, are given by:

(2)

These can be regarded as the “filtered” or “denoised” approximations of the subject structure 

segmentations. The surface representations of the subject structures were then created by 

applying the deformation ϕi to the template surfaces:

(3)

The surfaces Ssubi, i = 1, 2,…, 754 are the ones our statistical analyses were based on in 

subsequent sections. LDDMM carries the smooth submanifold diffeomorphically, and thus 

is capable of maintaining the smooth boundary and the correct topology of the template 

surfaces in the target surfaces [Miller et al., 2006]. This method of surface generation has 

already been validated in [Qiu and Miller, 2008] in detail. We quantitatively compared the 

structure volumes after the de-noising procedure with the original FreeSurfer volumes in 

terms of kappa overlap [Landis and Koch, 1977] and volume difference. As shown in Figure 

1, for each structure, an average kappa overlap above 0.85 was obtained. For each structure, 

the average volume of the segmentations from the de-noising procedure and that of the 

original FreeSurfer segmentations, as well as their differences are listed in Table II. For a 

majority of structures, the mean volume discrepancy is within 10%. The discrepancy mostly 

occurs where the FreeSurfer segmentations are not smooth or have topological errors or thin 

structures that FreeSurfer is not able to identify in the MR image. Examples of such 

discrepancies can be found in [Qiu and Miller, 2008].

Template Surface Generation

Our statistical shape analysis within the framework of LDDMM is done on the basis of a 

template surface. To reduce the difference between the template and the group populations, 

we generated the template surface from a subset of the populations. For each single 

structure, every subject surface was first rigidly aligned (rotation and translation) to a 

common spatial position. The rigid registration algorithm computes an optimal 

transformation between the vertex sets of two surfaces S0 and S1, by minimizing a score 

combining registration and soft assignment, which is similar to the one considered in 

[Rangarajan et al., 1997]. In detail, let xi (i = 1, 2, .., M) denote the set of vertices on the 
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template surface, and yj (j = 1, 2, …, N) the set of vertices on the target surface, the cost 

function is:

(4)

for some λ > 0, subject to constraints 1, , wij ≥ 0, vij ≥ 0. The term 

(3–tr)(R)) is the regularization term. The matching term and the soft assign term are given 

by (wij+vij)|Rxi+T–yj|2 and t(wijlog wij+ vij log vij) respectively. R is the rotation matrix, and 

T ∈ R3.

After rigid registration, we computed an averaged template surface, using the algorithm 

described in [Ma et al., 2010]. Each observed subject surface is modeled as a random 

deformation of a hidden template plus additive Gaussian noise. Given this model, the 

template is estimated from the subject surfaces using an approximation of the expectation-

maximization (EM) algorithm [Dempster et al., 1977], subject to some topology constraints. 

It is enacted by ensuring that the hidden template surface is a diffeomorphic deformation of 

a reference shape, called hypertemplate. Equal proportions of subjects from the three groups 

were selected for the template averaging, resulting in a total of 270 subjects.

LDDMM-Surface Registration

After obtaining the template surface for each structure, we performed LDDMM-surface 

mapping [Vaillant and Glaunés, 2005] to compute a diffeomorphic registration between the 

template and each of the 754 target surfaces for each structure. In the LDDMM setting, the 

set of anatomical shapes is placed into a metric space. This is modeled by assuming that one 

shape can be generated from another via group actions of diffeomorphisms, i.e., that 

compared shapes are topologically equivalent, which is true for the subvolumes that we 

consider in this article. To compare shapes, we generate time-dependent diffeomorphisms by 

solving the ordinary differential equation ϕt=vt(ϕt), t ∈ [0, 1] with ϕ0 being the identity map 

and vt a three-dimensional vector field that will be computed by the algorithm. Given a 

template surface Stemp and a target shape Sobs (the observed subject surface), the inexact 

matching registration algorithm minimizes the functional:

(5)

where ϕ1 · Stemp is the deformed template, resulting from the action of the diffeomorphism 

at time t =1 on the template surface. The function D is a discrepancy measure between 

surfaces [Vaillant and Glaunés, 2005]. After minimization, the integral term in the cost 

function can be interpreted as a squared geodesic distance, in shape space between the 

template and the deformed template. The norm |·|V is a Hilbert norm, V being a reproducing 

kernel Hilbert space of vector fields. To ensure that the solutions are diffeomorphisms, V 

must be a space of smooth vectors [Dupuis et al., 1998].
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The solutions take a special form after discretization. Assume that surfaces are triangulated, 

and let xj denote the vertices of the template surface Stemp. It has been proved that the 

solution of Eq. (5) must be of the form

(6)

where kV denotes the reproducing kernel of the space V and α is the momentum vector 

[Camion and Younes, 2001; Joshi and Miller, 2000]. In practice, kV is selected to be a 

Gaussian kernel in the sense that . After reduction, Eq. (5) can be 

equivalently put in the form:

(7)

where K(xt) is the matrix formed with kV(xt
i, xt

j).

Vertex-Based Statistical Analysis

From the LDDMM-surface mapping, we calculate a scalar field on the template surface 

according to: J=log (det (Dϕt)), where Dϕt is the Jacobian matrix of ϕt. This scalar field 

measures the expansion or atrophy at each vertex of the subject relative to the template in 

the logarithmic scale: i.e. positive values correspond to surface expansion of the subject’s 

structure relative to the template at a particular location, while negative values denote 

surface atrophy of the subject’s structure relative to the template. We shall call this scalar 

field as a “deformation marker” Jk(s) which is indexed at each vertex k of the template 

surface for each subject s. Similar morphometric statistics have been used in [Ashburner and 

Friston, 2000; Chiang et al., 2007; Qiu et al., 2009; Wang et al., 2011; Woods, 2003]. This 

vertex-based analysis (which therefore restricts to shape boundaries) arises naturally for 

studying shape changes since, in our case, the subcortical structures at 1 mm scale MRI 

appear constant in contrast (so that little information is available inside the structures).

In our vertex-based statistical group analysis, we introduce a group variable ϒ(s) to 

represent one of the groups in comparison. Let ϒ(s) be equal to 1 if subject s belongs to that 

group. The statistical model is given by (at each vertex k):

(8)

where Xcov (s) is the covariate information (confounding factors) included in the analysis. In 

our study, we covaried for age, sex, and the estimated intracranial volume. We tested for the 

null hypothesis that βk,1= 0 separately for all vertices k. Statistics were therefore computed at 

each vertex of the triangulated template surface, and P values were corrected for multiple 

comparisons. More precisely, for each k, we computed the statistic:
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(9)

where RSS0 is the residual sum of squares under the null hypothesis, and RSS the residual 

sum of squares under the general hypothesis. We then compute F*=maxkFk, the maximum 

value of the statistics over all vertices of the template surface. The statistical significance of 

differences between the two groups in comparison is measured based on Fisher’s method of 

randomization. We utilized Monte Carlo simulations to generate 40,000 uniformly 

distributed random permutations of the group labels, which gives rise to a collection of the 

F* statistic coming from each permutation. The p-value for the significance of the group 

labels is then given by the fraction of the times that the values F* from the permutations are 

larger than the value obtained from the true groups. The set of vertices on which the null 

hypothesis is not valid is estimated to be:

(10)

where q* is the 95% value of the collection of the F* statistic from the permutation tests 

[Nichols and Hayasaka, 2003] and Fk is the observed statistic at vertex k (with the true 

labels). To quantify the group shape variation (compression or expansion), we define the 

degree of the group shape differences as the negative value of the sum of β coefficients 

associated to the two groups in comparison. Thus, negative values denote expansion in the 

latter group for comparison while positive values denote atrophy.

In our study, for each structure, we first performed three statistical comparisons between 

every two of the three groups—HC, MCI, and AD, and then compared the two subtypes of 

MCI: MCI-stable and MCI-AD.

PCA-Based Analysis

Miller et al. [2006] proved that the optimal momentum, αt, solution of Eq. (7) satisfies a 

conservation property: the initial momentum α0 encodes the geodesic connecting the 

template surface to the deformed template surface via

(11)

where ()−T denotes matrix inverse and transpose and ϕt the diffeomorphism associated to vt 

in Eq. (6). The deformations from the LDDMM-surface mappings are completely encoded 

by the initial momentum α0 in the template surface coordinates, which allows for linear 

techniques to be applied to it.

For each structure, we performed principal component analysis (PCA) on the initial 

momentum α0 of all the subjects to construct an orthonormal basis. The feature space 

constructed via the initial momentum was then linearly projected to the orthogonal 

directions that carry the greatest shape variance. Age, sex, and the estimated intracranial 

volume information has been corrected using a linear regression model before performing a 
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nonparametric statistical test, in which we utilized the first M (M < 754) coefficients in the 

principal component basis (PCs) that account for 95% of the total variance.

Nonparametric permutation tests were performed between every two of the three groups. 

Take group HC and group AD for example. Let ẐHC and ẐAD be the sample means of the 

first M principal component values for the two groups, and Σ̂ the pooled sample covariance. 

To test the null hypothesis H0: ẐHC and ẐAD, we computed the Hotelling’s T2 statistic 

[Anderson, 1958] as:

(12)

where NHC is the total number of HC subjects and NAD is the total number of AD subjects. 

Similar to the vertex-based analysis, we used Monte Carlo simulations to generate random 

permutations to correct the P values.

The same statistical tests have also been applied to the structure volumes (replacing the 

principal component values with the structure volume size) for comparison purposes.

Linear Discriminant Analysis

Via non-parametric statistical tests on each set of PCs, we found that group differences 

between AD and HC exist in a majority of structures. It is natural to try to discriminate 

between the two groups based on those PC features showing group differences, and we 

chose linear discriminant analysis (LDA) to do so. In this framework, for the two-class 

problem, the discriminating direction is the projection of the differences between the two 

class means onto the common covariance, yielding K−1(μHC − μAD, where K is the common 

covariance of the two populations, and μHC, μAD are the two class means.

In terms of discriminant analysis, we have several different goals: (1) evaluate the 

performance of the LDA classifiers, trained on the PCs of each single structure, to determine 

which structure has the most discriminating shape information; (2) determine whether 

combining the shape information of multiple structures will strengthen the classification 

effect; (3) determine whether increasing the number of structures we use would improve the 

accuracy; (4) determine the best LDA classifier we can build based on the shape information 

of the seven structures; (5) estimate the true classification rate we would obtain from our 

classification procedure.

To reduce the dimension of the feature space, we selected only the PCs that show significant 

group difference between HC and AD. For each PC, we did the same non-parametric 

statistical test as described in PCA-based analysis (PCA-Based Analysis section) and 

selected those PCs with a p-value less than 0.05 obtained in the permutation test.

To fulfill our goals (1) to (4), we tested all the possible LDA classifiers we could build from 

the PCs of the seven structures. Considering each possible combination, we built 27−1=127 

different classifiers and compared their classification performance with each other based on 

leave-one-out cross validation. The procedure is demonstrated in Figure 2, and consists of 

three steps. The first step is to create all the possible feature spaces by combining the 
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different sets of PCs. Since we have seven sets of PCs, the result is a total of 127 feature 

spaces. The next step is to test the classification rate based on the feature information in each 

combination. In this step, we adopt leave-one-out as the cross validation procedure: leave 

one subject out and train an LDA classifier based on the feature vectors of all the other 

remaining subjects, then use this LDA to classify the subject excluded at the beginning. In 

the end, we select the LDA classifier with the highest average correct classification rate in 

the previous step as our optimal LDA classifier. To test whether shape information is more 

discriminating than volume information, we performed the same procedure using only the 

volume information of the structures and compared.

To estimate the true classification rate we would obtain from our classification procedure, 

we again use leave-one-out as our cross-validation strategy. The cross-validation process is 

summarized in Figure 3. We exclude the initial momentum of one subject at the very 

beginning, and then build a PCA basis, based on the initial momentums of all the other 

remaining subjects, for every structure. Then, we take two steps to reduce the dimensionality 

of each feature matrix: (1) we select the first N components that account for a 95% of the 

total variance; (2) among the N feature vectors we keep in (1), we sift the ones with 

significant group difference, for which we use Student’s t-test. After that, we select the 

optimal LDA classifier via the procedure described in Figure 2. And in the end, the optimal 

LDA classifier is used to classify the subject removed at the very beginning. This procedure 

is done for each subject. To determine which structure, among all the seven, exhibits the 

most discriminating shape information, we tested the classification rate using each single 

structure. For example, in examining the classification rate of the LDA classifier built from 

hippocampus shape information, we did not select the optimal LDA classifier for each 

subject. Instead, we used the LDA classifier built from the shape feature of hippocampus to 

classify the subject excluded at the very beginning and then took the average.

Transferring the Subregions of Hippocampus and Amygdala Onto the Template Surfaces

Two ultra-high resolution (0.8mm×0.8mm×0.8mm) T1-weighted images were collected 

using high-field 7T image acquisition technology. One subject (sub#1) was used for 

manually segmenting the hippocampus into subregions while the other one (sub#2) was used 

for the left amygdala subsegmentation. Subject sub#1 is a 30-year-old male. And the subject 

sub#2 is a 42-year-old male. Both subjects are considered healthy by self-report. The two 

subjects were scanned using a standard MPRAGE protocol in a Philips Achieva 7.0T 

scanner (TR =4.3 ms, TE =1.95 ms, flip =7, FOV =220 × 220 × 180). As described in the 

Appendix, the hippocampus in both hemispheres was manually subdivided into three 

distinct regions: CA1, subiculum, and the remaining part consisting of CA2, CA3, and 

dentate gyrus, for which we will denote as CA2+CA3+DG. Triangulated surfaces 

representing the boundaries of the hippocampus as well as its subregions were generated 

based on the Marching Cube algorithm. Then, the boundaries of the three subregions were 

projected onto the mother surface (the surface of the hippocampus) by finding the nearest 

vertex. We performed LDDMM-surface mapping between the hippocampus surface of the 

high-resolution image and our template hippocampus to connect the two different coordinate 

systems, and thereby transfer the three subregions of the 7.0T hippocampus onto our 

template surface. The left amygdala of the other high resolution MRI image was also 
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subsegmented into four regions: basolateral, basomedial, centromedial, and lateral nucleus. 

The four subregions were also similarly transferred to the left amygdala template surface 

used in our study. The process of transferring the three left hippocampus subregions from 

the 7.0T high-resolution MRI image onto our template surface is illustrated in Figure 4. The 

boundaries of the subsegmentations of the hippocampus in both hemispheres and the left 

amygdala are shown in Figure 5 by projection onto the “mother” surface. Group shape 

variations were then evaluated based on each single subregion.

RESULTS

Comparisons of HC, MCI, and AD

Results obtained from the vertex-based statistical analyses are summarized in Figures 6 to 

11, describing regionally-specific group surface differences between HC and AD, HC and 

MCI, as well as MCI and AD. The figures highlight vertices on the template surfaces at 

which significant compression or expansion was detected in the latter group at the 

significance level of P = 0.05. To be specific, Figure 6 to 8 respectively show group shape 

differences detected in those structures near medial temporal regions—the amygdala and the 

hippocampus, as well as the lateral ventricle. Figure 9 shows the group differences in the 

basal ganglia regions as well as the thalamus. Figure 10 shows the relative shape variations 

of all the seven structures in the left hemisphere while Figure 11 shows shape differences in 

the right hemisphere.

To explore the shape variations between different groups in the amygdala and the 

hippocampus more finely, and identify subregions that are most affected by MCI or AD 

pathology, we evaluated the shape differences on each subregion of the left amygdala and 

the hippocampus in both hemispheres, the subregions of which were transferred from high-

field 7T manual segmentations. Figure 12 demonstrates the group surface deformation 

differences between HC and AD, HC and MCI, as well as MCI and AD in terms of the four 

compatible compartments of the left amygdala—basolateral, basomedial, centromedial, and 

lateral nucleus. Figures 13 and 14 show the group shape differences in the three subregions

—CA1, CA2+CA3+DG, and subiculum of the left hippocampus and the right hippocampus.

For the PCA-based analysis, the value, M, that indicates the number of the main PCs 

accounting for 95% of the total variance of the initial momentum feature space (consisting 

of the initial momentum vector of all subjects) was 21 for left amygdala, 24 for right 

amygdala, 48 for left hippocampus, 49 for right hippocampus, 44 for left ventricle, 40 for 

right ventricle, 45 for left caudate, 45 for right caudate, 57 for left putamen, 59 for right 

putamen, 61 for left thalamus, 60 for right thalamus, 30 for left pallidum, and 29 for right 

pallidum. The value M is related to the variability of the structure in the general population. 

The fact that this value varies from structure to structure may indicate that some structures 

are more stable than others, in the sense that the variance of those structures with small M is 

concentrated in a small number of components. In testing the true classification rate as 

described in Figure 3, there will be different PCA bases for different left-out subjects since 

we do leave-one-out on PCA. Among all the 385 (210 HC subjects and 175 AD subjects) 

PCA bases that were computed in that way, the amount numbers of selected PCs was were 

the same for the left amygdala (21 PCs), right amygdala (23 PCs), left hippocampus (46 
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PCs), right hippocampus (47 PCs), left thalamus (58 PCs), right thalamus (57 PCs), left 

putamen (55 PCs), right putamen (56PCs), left pallidum (29), right pallidum (28), and left 

caudate (42 PCs). For the left ventricle, 368 out of 385 PCA bases had 39 vectors (the mean 

value being 39.0442), while for the right ventricle, 384 out of 385 had 39 vectors (the mean 

value being 39.0078). Finally, for the right caudate, 303 out of 385 runs selected 43 PC’s, 

with mean value equal to 42.7870. Results obtained from the PCA-based analyses were in 

strong agreement with those found in the vertex-based analyses. In Figure 15, we plot the 

empirical distributions of the left amygdala and the left hippocampus from randomized 

Hotelling’s T2 tests with 40,000 group permutations, between HC and MCI, HC and AD, as 

well as MCI and AD. The p-values were calculated from the random permutation tests, after 

correcting for age, sex, and the estimated intracranial volume. All the three comparisons 

show group differences in both the left hippocampus and the left amygdala, as revealed by 

the p-values. The upper bounds of the confidence intervals for all the p-values obtained 

based on PCs and the structure volumes are listed in Table III.

In terms of discriminating between the two groups HC and AD, we found that the shape PC 

information associated with each individual structure is uniformly significantly more 

discriminating than the volume information of that structure—i.e. using shape PCs yields 

better classification accuracy than volume for every single structure. Generally, based on the 

shape information, the classification errors were reduced by more than 10% for each single 

structure. The two sets of classification results are listed in Table IV. In addition, Table IV 

demonstrates that, among all the seven structures, hippocampus exhibits the highest 

discriminating ability.

Comparing the mean classification rates of all the LDA classifiers obtained from different 

combinations of sets of PCs, we found that, based on the initial momentum of all the 

subjects, the optimal LDA classifier came from a combination of three structures—the 

hippocampus, the amygdala, and the lateral ventricle. This is in agreement with our vertex-

based analysis findings, as well as those in the nonparametric statistical analysis, where we 

found that the strongest shape differences occurred at the hippocampus, the amygdala, and 

the lateral ventricle. In estimating the true classification rate that could be achieved using 

our classification pipeline, the optimal LDA classifiers may be different across iterations 

since the process of selecting the optimal LDA classifier is embedded in the leave-one-out 

process. For example, when subject 1 is left out, the optimal LDA classifier comes from a 

combination of hippocampus and amygdala while for subject 2, the optimal one comes from 

a combination of hippocampus, amygdala, and ventricle. We therefore calculated the 

percentage of each structure being included in the optimal classifier. We found that among 

all optimal LDA classifiers, hippocampus has been selected 88% of the time, amygdala 83% 

of the time, ventricle 71% of the time, thalamus 45% of the time, caudate 36% of the time, 

putamen 37% of the time, and pallidum 26% of the time. This, to some degree, confirms our 

conclusion that if we were to design a single classifier based on the information from all the 

subjects, the combination of the hippocampus, the amygdala, and the ventricle would likely 

yield an optimal LDA classifier. According to the leave-one-out cross-validation procedure, 

as described in Figure 3, the correct classification rates were: 88% for the HC group, 86% 

for the AD group, and 86% for the two groups together. In comparison, the correct 
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classification rates using volume information, via the same procedure, were: 76% for the HC 

group, 75% for the AD group, and 75% for the two groups in overall.

Comparisons of MCI-Stable and MCI-AD

To compare the two subtypes of MCI at baseline: MCI that remained stable (MCI-stable) 

and MCI that deteriorated to AD (MCI-AD), we performed the same vertex-based statistical 

analysis for all the seven structures in both hemispheres. Vertices on the template surfaces 

revealing statistically significant group differences are shown in Figures 16 to 18. 

Comparing MCI-stable versus MCI-AD, we found group surface differences in three 

structures: the hippocampus, the amygdala, and the lateral ventricle. Little difference has 

been detected on other subcortical structures. The shape variations between MCI-stable and 

MCI-AD, in terms of the subregions of left amygdala and the hippocampus in both 

hemispheres, are displayed in Figures 19 and 20.

DISCUSSION

Statistical shape analysis offers an alternative to volume-based analysis for detecting and 

quantifying abnormalities of deep subcortical and ventricular structures in dementia of the 

Alzheimer type. An analysis of the surfaces enclosing the brain structures allows for the 

characterization of shape abnormalities that are associated with MCI or AD, which do not 

necessarily involve changes in the overall size of the structures. In addition to measuring 

group differences in subjects with MCI or AD compared with HC ones, shape-based 

analysis may also help identifying MCI individuals who are suffering from prodromal AD 

[McEvoy and Brewer, 2010; Morris and Cummings, 2005]. Existing shape analysis methods 

have mainly focused on a single structure such as hippocampus [Ferrarini et al., 2006; 

Thompson et al., 2004; Wang et al., 2003, 2006], whereas our study included all the 

subcortical structures and the lateral ventricle. The shape abnormality of a single structure 

may be nonspecific to AD. Thus, a combination of neuroimaging measures from multiple 

structures may be more sensitive and specific to AD pathology, helping identify 

abnormalities in MCI and AD and predicting conversion from MCI to AD more accurately. 

According to our discriminant analysis results, combining the shape information of the three 

structures—amygdala, hippocampus, and lateral ventricle improved both the sensitivity and 

the specificity obtained from any single structure. The highest specificity and sensitivity 

from a single structure is 86% and 81% from the hippocampus. These two numbers were 

increased to 88% and 86% by using the shape measures from those three structures. This 

study is an extension and enrichment of the study reported in Qiu et al. [2009]. The 

procedures of surface generation, surface template estimation, and surface mapping are 

similar to those introduced in [Qiu et al., 2009]. Other methods of creating surfaces with 

topology correction from volume segmentations are available [Bazin and Pham, 2007; 

Brechbuhler et al., 1995; Han et al., 2003; Shi et al., 2010], the investigation of which will 

be one important future direction of our work. This study differs from the one by [Qiu et al., 

2009] in several aspects: First, the analysis methods are different in that, [Qiu et al., 2009] 

introduced the Laplace-Beltrami (LB) operator on the template surfaces and then performed 

random field testing on the LB coefficients of multiple structures whereas we constructed a 

statistical model directly on the log-determinant of the Jacobian of the deformation maps 
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and utilized PCA on the initial momenta vectors to discriminate between the HC and AD 

groups. Second, compared with the results reported in [Qiu et al., 2009], our method 

detected much stronger shape differences between different groups. Also, the results are 

slightly different since we found no atrophy in lateral ventricle in either side and no 

expansion in either hippocampus or amygdala in both hemispheres. In contrast, according to 

the results shown in [Qiu et al., 2009], mild expansion was found in the posterior segment of 

the hippocampus and some regions on amygdala in both hemispheres. Mild atrophy was also 

reported between MCI and AD in the posterior horn of the bilateral lateral ventricles. Third, 

instead of only evaluating the differences that exist in MCI and AD, we also applied our 

method to differentiate the subtypes of MCI based on baseline measures. Moreover, we 

explored more subtle structural abnormalities by subdividing the hippocampus at each side 

into CA1, subiculum, and the remaining part consisting of CA2, CA3, and dentate gyrus, the 

left amygdala into basolateral, basomedial, centromedial, and lateral nucleus. Finally, about 

twice as many MR scans have been used in our study.

Our study revealed significant atrophy in the hippocampus and the amygdala and prominent 

expansion in the lateral ventricle, in both hemispheres, in MCI as well as AD groups (Figs. 

6–8), which suggested that histopathological changes occurred before being defined as AD 

clinically. This conclusion is consistent with previous findings [Fennema- Morra et al., 

2009; Notestine et al., 2009; Qiu et al., 2009]. Transferring the subregions of the 

hippocampus, both left and right, from a 0.8 mm isotropic 7.0T MR scan onto our template 

surfaces (Figs. 13 and 14) suggested that the most pronounced atrophy occurred in the 

subregion CA1, which has been reported to be associated with memory and learning 

[Lepage et al., 1998; Markesbery et al., 2006; Price et al., 2001; West et al., 2004]. The 

subregions revealing the strongest atrophy in either MCI or AD populations on the left 

amygdala were found to be close to the basolateral complex (Fig. 12), the region that has 

also been reported to play a role in modulating consolidation of memory [Vazdarjanova and 

McGaugh, 1999]. According to [Price, 2003], the amygdala can be parcellated into core and 

noncore subregions based on functional characteristics. The core region consists of the 

lateral, basal, and accessory basal nuclei while the non-core region consists of the remaining 

central, medial, and cortex nuclei [Munn et al., 2007; Sheline et al., 1998]. The fact that 

relatively stronger shape compression was detected at basolateral and lateral nucleus, 

compared with the other two subregions, is plausible because these two regions are core 

regions that are responsible for storing the memories of emotion.

There have been extensive studies on hippocampal shape analysis in comparing healthy 

controls with AD populations [Csernansky et al., 2000, 2005; Li et al., 2007; Scher et al., 

2007; Wang et al., 2003, 2006]. The general conclusions have been that there is atrophy near 

CA regions, which is in agreement with our findings on the hippocampus. However, some 

studies revealed no group differences in the right hippocampus [Csernansky et al., 2005]. 

One potential limitation of those earlier studies is that the sample size was limited. For 

example, the largest study conducted by [Wang et al., 2006] compared 49 cases with 

minimal AD to 86 normal controls. The sample size of our study (210 HC, 369 MCI, 175 

AD) is large for this kind of analysis, which may be an explanation for our stronger results. 

For interpreting the role of the amygdala in MCI and AD, there are relatively few 

neuroimaging studies [Poulin et al., 2011], despite that there are quite a few earlier 
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histopathological findings on it [Herzog and Kemper, 1980; Scott et al., 1991, 1992; 

Tsuchiya and Kosaka, 1990]. The nonuniform shape changes along the amygdala may well 

explain the variation of volume detected in [Poulin et al., 2011]. Our results in the lateral 

regions of the left amygdala coincide with the findings presented in [Cavedo et al., 2011; 

Qiu et al., 2009].

In addition to structural abnormalities near the medial temporal area and the lateral ventricle, 

we also found mild regional atrophy of basal ganglia structures such as the left and right 

putamen and globus pallidus in MCI and AD groups (Fig. 9). Either atrophy or expansion 

has been detected on some vertices of the surfaces of thalamus at each side in MCI and AD, 

compared with HC (Fig. 9). Mild expansion was also found in caudate nucleus in AD when 

compared with normal healthy subjects (Fig. 9). Since the number of vertices showing 

expansion on the caudate surface is very small, this may not influence the overall volume 

size, which makes it difficult to measure via the overall structure volume. Also, the 

expansion in either caudate or thalamus may be due to inaccurate automated volumetric 

segmentations or partial volume effects. As revealed by Figure 9, most expansion in the 

caudate nucleus occurs at the tail part. This part of the caudate has been suggested to be the 

most difficult region to segment even manually since the contrast decreases a lot in 3T T1-

weighted images between the caudate tail and its surrounding white matter. We examined 

the original segmentation from FreeSurfer around this region in representative scans. As 

shown in Figure 21, the original automated segmentation inaccurately labeled the tail part of 

the caudate, which could be a potential cause for the unexpected expansion in the AD group 

when compared with the other two groups. Further application of the same statistical shape 

analysis pipeline on the manually-labeled caudate may help address this issue. Comparing 

MCI and AD, we found a similar pattern but much stronger magnitude of atrophy or 

expansion in AD, which indicates that the severity of regional shape changes (atrophy or 

expansion) is associated with the degree of clinical impairment. This finding has also been 

reported for cortical regions [Dickerson et al., 2009; McDonald et al., 2009].

The purpose of comparing the baseline measures of the subgroups of MCI is to help assess 

whether a person diagnosed with MCI has underlying AD pathophysiology based only on 

baseline information. In our datasets, among the subjects that had been diagnosed as MCI at 

baseline, 205 were diagnosed to have remained MCI (MCI-stable), while another 151 

converted to AD (MCI-AD) over a fixed follow-up time of 1 year. Unlike the significant 

differences observed among HC, MCI, and AD groups in basal ganglia and thalamus, the 

MCI subgroups did not significantly differ in these structures. Compared with MCI 

individuals that did not deteriorate to AD, atrophy in both hippocampus and amygdala and 

regional expansion of lateral ventricle in both hemispheres was detected in MCI-AD (Figs. 

16–18). According to the subsegmentations of the hippocampus, the strongest shape changes 

also occurred at CA1 in both hemispheres (Fig. 20). For the left amygdala, the basolateral 

subregion was found to display most prominent atrophy in MCI-AD (Fig. 19), as compared 

with MCI-stable.

According to the p-values shown in Table III, the PCA-based method is capable of capturing 

even the mild differences between two groups, demonstrating results consistent with those 

obtained from the vertex-based analyses. As suggested in [Wang et al., 2007], our PCA-
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based method may provide a good way to find a biomarker for discriminating healthy 

subjects from the subjects with MCI or AD. Our initial discriminant analysis suggests that 

the shape information associated with each individual structure is consistently more 

discriminating than the corresponding volume information. A direct comparison shown in 

Table IV suggests that, for each single structure, utilizing its shape information for LDA 

discrimination would improve the classification rates obtained by utilizing the volume 

information. We tested on all the combinations of the PCs from all the structures to select 

the optimal LDA classifier in the leave-one-out procedure. Our procedure yielded correct 

classification rates of 88% for the HC group and 86% for the AD group. Among all the 

optimal LDA classifiers, hippocampus has been selected for 88% of the time, amygdala 83% 

of the time, ventricle 71% of the time. This conclusion agrees with our vertex based analysis 

results in which we found that the most prominent shape variations occurred at these three 

structures.

In this study, the shape PCs were computed for each structure separately instead of being 

computed at once for all the structures. The main concern of not performing PCA on 

features from all the seven structures simultaneously is that it may downplay some small but 

important structures such as the amygdala. Extracting features from multiple structures at 

once should be considered in future work, as done in [Gorczowski et al., 2010]. In finding 

the optimal LDA classifier, we considered the set of PCs from each structure as a unit and 

then did a cross-validation search for all the possible combinations. It is plausible that we 

may get even better classification results if we use a combination of a subset of the PCs of 

one structure and a subset of the PCs of some other structures. However, considering each 

PC separately would be computationally prohibitive. A possible solution can be to boost the 

LDA and select the most relevant PCs at each boosting iteration [Flores et al., 2010; Lu et 

al., 2006; Skurichina and Duin, 2002]. This will be the subject of future work.

Our present study was mainly focused on analyzing the shape differences of seven structures 

(left and right), as well as the three subregions of hippocampus and the four subregions of 

left amygdala, in groups of different disease states (HC, MCI, AD). In addition, we applied 

our method to study the shape differences within the MCI group, in an attempt to identify 

regional changes in subjects with MCI that converted to AD over time. We have also 

presented our preliminary results in developing biomarkers from shape information of those 

structures that can predict risk of decline. The biomarker, designed from the initial 

momentum information of the seven subcortical structures, is relatively novel compared 

with the biomarker proposed by other studies. Currently, a lot of studies have been focusing 

on identifying biomarkers for the classification of AD/HC based on structural MRI features 

such as the hippocampus volume and the cortical thickness [Cho et al., 2011; Desikan et al., 

2009; Klöppel et al., 2008; Shen et al., 2011; Vemuri et al., 2008]. Future work should focus 

on incorporating the shape information of multiple cortical regions to aid the discrimination 

procedure as well as utilizing more advanced machine learning techniques beyond LDA for 

the analysis. In addition, incorporating the subsegmentations of the hippocampus and the 

amygdala should advance the classification in AD/MCI as demonstrated in [Li et al., 2007]. 

Another important extension is to incorporate longitudinal information by analyzing the 

subcortical structures on serial structure images to determine whether these methods are 
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valuable for tracking disease progression and predicting AD conversion from MCI or HC 

subjects.
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APPENDIX. Manual Delineation Protocol

Hippocampus

The hippocampus is a horseshoe shaped structure with interfolded layers that plays a central 

role in the limbic system. It is located within the temporal lobe, posterior to the amygdala. 

The first anterior slice of the hippocampus head appears as a thin stripe right inferior to the 

amygdala and superior to the entorhinal cortex with its alvear white matter as a well-defined 

boundary. The superior boundary of the hippocampus is the amygdala while its inferior 

boundary is the white matter of the temporal lobe that separates it from the entorhinal cortex 

and the parahippocampal gyrus. Its lateral boundary is the temporal horn of the lateral 

ventricle and the medial boundary is the well-contrasted cerebral spinal fluid (CSF). Moving 

posteriorly, the hippocampus gradually replaces the amygdala. It is then surrounded by the 

white matter of the temporal lobe and the crus of the fornix. The hippocampus disappears 

when the splenium of the corpus callosum stops connecting the two brain hemispheres.

For segmenting the hippocampus into subregions, due to contrast limit, we decided to divide 

the hippocampus into three subregions: Cornu Ammonis 1 (CA1), a subregion containing 

CA2, CA3, and dentate gyrus (CA2+CA3+DG), subiculum (SUB). In coronal slices, the 

CA1 appears first to be inferior to the amygdala and superior to the SUB. Moving 

posteriorly, the part CA2+CA3+DG appears to be wrapped around by CA1 and SUB. The 

CA1 moves laterally and appears as a crescent with the temporal horn of the lateral ventricle 

as its lateral boundary and the white matter of the temporal lobe as its inferior boundary. The 

SUB subsequently moves medially as a thin stripe adjacent to the CA1 and lateral to the 

uncal sulcus. The CA2+CA3+DG part stays inferior to the amygdala and medial to the 

temporal horn of the lateral ventricle. Its lateral boundary is the CA1 and its inferior 

boundary is the SUB. In the last few slices, the CA2+CA3+DG part appears to be 

surrounded by the crus of fornix and the lateral ventricle. The boundaries among the three 

subregions are also more defined in sagittal view.

Amygdala

The amygdala is a complex structure that is located in the medial temporal lobe, inferior to 

the putamen and the globus pallidus and anterior to the hippocampus. The first anterior slice 

of the amygdala appears as an ovoid shape when the temporal lobe already connects to the 

frontal lobe by a visible limen insulae. The superior boundary of the amygdala is the 

endorhinal sulcus while its inferior boundary is the white matter that separates it from the 

parahippocampal gyrus. Its lateral boundary is the white matter of the temporal lobe and its 

medial boundary is marked distinctively by CSF and the semiannular sulcus. Moving 

posteriorly, the inferior boundary of the amygdala is the uncal recess of the temporal horn of 

lateral ventricle and the alvear white matter of the hippocampus. The amygdala subsequently 

becomes smaller and is replaced by the hippocampus. In caudal slices, the amygdala appears 

as a thin gray matter stripe superior to hippocampus and inferior to the globus pallidus and 

then gradually disappears.
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In our protocol for the manual delineation of the subregions of the amygdala, it is traced in 

the coronal view and divided into four nuclei: lateral nucleus, basolateral nucleus, 

basomedial nucleus, and centromedial nucleus. The lateral nucleus appears first in a 

characteristic ovoid shape in more anterior slices when the limen insulae already appears to 

connect the temporal lobe with the frontal lobe. It becomes bigger when moving posteriorly 

with the lateral and inferior boundaries defined by the white matter of the temporal lobe. 

Moving 1 mm posteriorly, the basomedial nucleus starts to appear superior to the lateral 

nucleus with the endorhinal sulcus and the white matter of temporal lobe as superior and 

medial boundaries. When the semiannular sulcus appears, the basolateral nucleus starts to 

appear as stripes inferior to the basomedial nucleus and superior to the lateral nucleus. 

Moving more posteriorly, the hippocampus head appears medially to the basolateral nucleus 

and the temporal horn of the lateral ventricle becomes the lateral boundary of the lateral 

nucleus. The centromedial nucleus starts to appear superior to the basomedial nucleus and 

inferior to the putamen and the globus pallidus. Moving caudally, the hippocampus starts to 

replace the amygdala and the lateral nucleus, the basolateral nucleus and the basomedial 

nucleus start to be smaller and then disappear. The temporal horn of the lateral ventricle 

appears between the hippocampus and the amygdala and becomes the inferior boundary of 

the centromedial nucleus. The centromedial nucleus appears as a thin gray matter stripe 

above the hippocampus and gradually disappears.
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Figure 1. 
This figure shows the mean and the standard deviations of the Kappa Overlaps between the 

segmentations from the denoising pipeline and the original FreeSurfer segmented volumes. 

Black and white bars respectively denote left and right structures. Vent: lateral ventricles, 

thal: thalamus, caud: caudate, puta: putamen, pall: pallidum, hipp: hippocampus, amyg: 

amygdala.

Tang et al. Page 27

Hum Brain Mapp. Author manuscript; available in PMC 2015 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
This figure summarizes the procedure of selecting the optimal LDA classifier based on the 

PCs from all the fourteen structures, including three steps. Step 1 is to create all the 

combinations of PCs, resulting in a total of 127. Step 2 is to test the mean classification rate 

for each set of PCs, based on leave-one-out LDA. Step 3 is to select the LDA classifier with 

the highest mean correct classification rate in Step 2. Hi: hippocampus, am: amygdala, vl: 

lateral ventricle, th: thalamus, pu: putamen, pa: pallidum, ca: caudate.
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Figure 3. 
This figure summarizes the leave-one-out cross-validation procedure of testing the true 

classification rate that we would be able to yield using our procedure.
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Figure 4. 
This figure illustrates the scheme of projecting the three subsegmentations of left 

hippocampus from a 7.0T high-field MRI image to the template surface, including: 

manually segmenting the left hippocampus of the 7.0T MR scan into three regions—CA1, 

CA2+CA3+DG, and subiculum; generating the triangulated surface for the left hippocampus 

of the 7.0T data; projecting the three subregions of the volume onto the mother hippocampus 

surface; performing LDDMM-surface mapping between the 7T hippocampus surface and 

our template surface; transferring the three subregions onto our template left hippocampus 

surface. [Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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Figure 5. 
This figure illustrates the subsegmentations of the left hippocampus (a), the right 

hippocampus (b), and the left amygdala (c) by projecting the boundaries onto the 

corresponding mother surface. [Color figure can be viewed in the online issue, which is 

available at wileyonlinelibrary.com.]
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Figure 6. 
a) and b) respectively show the group shape differences between HC and AD, HC and MCI, 

as well as MCI and AD measured in left and right amygdala. Both superior (left) and 

inferior (right) views are displayed for each group comparison. Negative color scale values 

indicate surface expansion in the latter group, and positive values indicate atrophy. The scale 

value quantifies the ratio of the local volume of the former group at a particular location to 

that of the latter group in logarithmic scale. [Color figure can be viewed in the online issue, 

which is available at wileyonlinelibrary.com.]
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Figure 7. 
a) and b) demonstrate the group shape differences between HC and AD, HC and MCI, MCI 

and AD of hippocampus in both hemispheres. Both superior (left) and inferior (right) views 

are displayed for each group comparison. Negative color scale values indicate surface 

expansion in the latter group, and positive values indicate atrophy. The scale value measures 

the ratio of the local volume of the former group to that of the latter group in logarithmic 

scale. [Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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Figure 8. 
Group shape differences detected in the lateral ventricles in both hemispheres. Colors 

corresponding to negative values indicate local expansion of surfaces in the latter group 

whereas positive values imply atrophy, compared with the former group. The more negative 

the value, the more prominent the expansion. The scale value measures the ratio of the local 

volume of the former group to that of the latter group in logarithmic scale. [Color figure can 

be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 9. 
Surface deformation differences between HC and AD, HC and MCI, as well as MCI and AD 

in basal ganglia regions and the thalamus. Colors corresponding to negative values indicate 

local expansion of surfaces in the latter group, compared with the former group, whereas 

positive indicates atrophy in the latter group. The scale value quantifies the ratio of the local 

volume of the former group to that of the latter group in logarithmic scale. [Color figure can 

be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 10. 
Group differences, between every two of the three groups, measured in the surfaces of all 

the seven structures in the left hemisphere. Warm color denotes regions where the 

corresponding structure has significant atrophy in the latter group when compared with the 

former group. Cool color suggests local expansion of the structure in the latter group when 

compared with the former group. Am: amygdala, hi: hippocampus, vent: lateral ventricle, 

thal: thalamus, puta: putamen, pal: globus pallidus, caud: caudate. The scale value measures 

the ratio of the local volume around a particular vertex of the former group to that of the 

latter group in logarithmic scale. [Color figure can be viewed in the online issue, which is 

available at wileyonlinelibrary.com.]
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Figure 11. 
Group shape variations of all the seven structure in the right hemisphere. Colors 

corresponding to positive values indicate regions on the structure where there is significant 

atrophy in the latter group when compared with the former group. Colors corresponding to 

the negative values suggest local expansion on the structure in the latter group, compared 

with the former one. Am: amygdala, hi: hippocampus, vent: lateral ventricle, thal: thalamus, 

puta: putamen, pal: globus pallidus, caud: caudate. The scale value measures the ratio of the 

local volume of the former group to that of the latter group in the logarithmic scale. [Color 

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 12. 
a)–c) respectively show the shape differences between HC and AD, HC and MCI, as well as 

MCI and AD in the four subregions of left amygdala. Different color scale ranges have been 

adopted for different comparisons. Warm color indicates regions where atrophy was 

detected in the latter group as compared with the former group. Cool color indicates local 

expansion in the region in the latter group when compared with the former group. The scale 

value measures the ratio of the local volume around each vertex of the template surface 

measured in the former group to that measured in the latter group in logarithmic scale. 

[Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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Figure 13. 
Group shape differences detected in the three subregions of left hippocampus—CA1, 

subiculum, and CA2+CA3+DG. Colors corresponding to positive values indicate atrophying 

regions in the latter group while negative indicates expanding regions in the latter group as 

compared with the former group. The color scale value quantifies the ratio of the local 

volume of the former group to that of the latter group in the logarithmic scale. Different 

color scale ranges have been used for different comparisons. [Color figure can be viewed in 

the online issue, which is available at wileyonlinelibrary.com.]
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Figure 14. 
Group shape differences between HC and AD, HC and MCI, as well as MCI and AD, 

detected respectively in CA1, subiculum, and CA2+CA3+DG of the right hippocampus. 

Warm color suggests atrophy while cool color suggests expansion in the latter group when 

compared with the former group. The scale value measures the ratio of the local volume of 

the former group to that of the latter group in logarithmic scale. Different color scale ranges 

have been used for different comparisons. [Color figure can be viewed in the online issue, 

which is available at wileyonlinelibrary.com.]
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Figure 15. 
PCA of the initial momentum matrices of the left hippocampus and the left amygdala. Each 

subfigure shows the permutation test results for group comparison based on the first M PCs 

that account for 95% of the total variability. Shown are: (1) F̂(T2) value (solid blue line) of 

each group comparison (total of three comparisons); (2) p = 0.0001 (red dot line), p = 0.001 

(blue dot line), and p = 0.05 (black dot line) for reference; (3) p-value derived from the 

40,000 permutation tests (solid green line). [Color figure can be viewed in the online issue, 

which is available at wileyonlinelibrary.com.]
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Figure 16. 
a) and b) display group differences, detected in the left and right amygdala, between the two 

subtypes MCI-stable and MCI-AD. Positive values indicate atrophy in MCI-AD while 

negative indicates expansion as compared with MCI-stable. The scale value measures the 

ratio of the local volume around each vertex on the template surface of the MCI-stable group 

to that of the MCI-AD in logarithmic scale. [Color figure can be viewed in the online issue, 

which is available at wileyonlinelibrary.com.]

Tang et al. Page 42

Hum Brain Mapp. Author manuscript; available in PMC 2015 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 17. 
Hippocampal shape differences between MCI-stable and MCI-AD. Warm color indicates 

regions on the hippocampus where significant atrophy has been detected in MCI-AD when 

compared with MCI-stable, whereas cool color indicates expansion. The scale value 

measures the ratio of the local volume of the hippocampus in MCI-stable to that in MCI-AD 

in the logarithmic scale. [Color figure can be viewed in the online issue, which is available 

at wileyonlinelibrary.com.]
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Figure 18. 
Shape differences between MCI-stable and MCI-AD detected on lateral ventricles in both 

hemispheres. The color corresponding to value 0 suggests no regional shape variation. 

Colors corresponding to negative values suggest expanding regions in MCI-AD when 

compared with MCI-stable, while those corresponding to positive values indicate atrophy in 

MCI-AD. The scale value measures the ratio of the local volume of the lateral ventricle in 

MCI-stable to that in MCI-AD in logarithmic scale. [Color figure can be viewed in the 

online issue, which is available at wileyonlinelibrary.com.]
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Figure 19. 
Shape difference between MCI-stable and MCI-AD in terms of the four subregions of left 

amygdala – basolateral (panel (a)), basomedial (panel (b)), centromedial (panel (c)), and 

lateral nucleus (panel (d)). Warm color suggests atrophying regions in MCI-AD while cool 

color suggests expanding regions when compared with MCI-stable. The scale value 

measures the ratio of the local volume of each subregion in MCI-stable to the local volume 

in MCI-AD in logarithmic scale. [Color figure can be viewed in the online issue, which is 

available at wileyonlinelibrary.com.]
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Figure 20. 
Shape differences between MCI-stable and MCI-AD detected on the three subregions of the 

hippocampus. Positive values indicate atrophying regions in MCI-AD while negative values 

indicate expanding regions as compared with MCI-stable. The scale value measures the ratio 

of the local volume of the former group to that of the latter group in logarithmic scale. 

[Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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Figure 21. 
Automated volume segmentations of caudate from FreeSurfer for representative subjects. 

[Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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TABLE I

Demographic data

Parameter

MCI

HC Group (n =210) Group (n =369) AD Group (n =175)

Subject age (yr) 76.25 ±5.01 75.03 ±7.32 75.28 ±7.49

No. male subjects 109 236 94

MMSE score 29.12 ±1.02 27.01 ±1.76 23.43 ±2.01

CDR-SB score 0.03 ±0.12 1.60 ±0.89 4.23 ±1.64
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TABLE II

Average volume measurements (mm3) of the original segmentations from Freesurfer and those “filtered” from 

the LDDMM-based pipeline as well as their mean differences

Original segmentation Filtered segmentation Mean volume difference (%)

lvent 22,132 21,899 1.05

lthal 6,395 6,255 2.18

lcaud 3,362 2,981 11.34

lputa 4,648 4,456 4.14

lpall 1,631 1,517 6.98

lhipp 3,165 2,971 6.12

lamyg 1,299 1,212 6.72

rvent 20,360 20,887 2.56

rthal 6,214 6,033 2.92

rcaud 3,454 2,964 14.21

rputa 4,608 4,453 3.37

rpall 1,655 1,513 8.61

rhipp 3,312 3,093 6.60

ramyg 1,318 1,228 6.88

lvent: left lateral ventricle, ltha: left thalamus, lcaud: left caudate, lputa: left putamen, lpall: left globus pallidus, lhipp: left hippocampus, lamyg: 
left amygdala, rvent: right lateral ventricle, rtha: right thalamus, rcaud: right caudate, rputa: right putamen, rpall: right globus pallidus, rhipp: right 
hippocampus, ramyg: right amygdala.
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TABLE IV

A comparison of the specificity and the sensitivity obtained from the LDA classifiers built respectively from 

the volume information and the shape information for each structure

Specificity Sensitivity

Volume information (%) Shape information (%) Volume information (%) Shape information (%)

Amyg 75 80 72 78

Hipp 76 86 74 81

Vent 73 83 53 79

Caud 47 68 58 68

Puta 53 75 58 78

Thal 49 76 58 75

Pall 51 68 54 68
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